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GENERATING REPRESENTATIVE SEQUENCES OF DAILY

PRECIPITATION FOR AGRICULTURAL SIMULATIONS

J. D. Garbrecht,  J. X. Zhang

ABSTRACT. Generated weather that represents alternative realizations of a particular historical record is often needed for
computer simulation of agricultural or agronomic impacts. The stochastic component of generated weather is based on
random numbers. This study shows that relatively short sequences of uniform random numbers, as used to generate daily
precipitation,  may not display sufficient uniformity to reproduce the distribution of the target historical precipitation record
or of a seasonal precipitation forecast. The magnitude of the discrepancy becomes an issue in applications that require
accurate replication of the historical record or forecast. A procedure is proposed to test sequences of uniform random numbers
before their use and retain only those sequences that display a high degree of uniformity as required by the weather generation
model. Generated precipitation with and without testing for uniformity of random numbers shows that the discrepancy
between the two can be important particularly for simulation duration less than 50 years, as are often involved in practical
water resources and agricultural applications. The use of “tested” random numbers leads to transition probabilities and a
precipitation distribution that are generally closer in agreement with those of the historical record. The effectiveness of the
method is illustrated by comparing generated daily precipitation based on “tested” and “non–tested” random number for
the Kingfisher, Oklahoma, historical precipitation record. The increased representativeness of the generated precipitation
using “tested” random numbers allows for shorter simulation duration of agricultural models and greater capability to
simulate subtle changes in precipitation such as those associated with seasonal precipitation forecasts.
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tochastically generated daily weather is often used
to drive environmental and agricultural models to
simulate erosion, chemical transport, productivity,
or management issues (e.g. Richardson, 1981;

Williams et al., 1984; Richardson, 1985; Wilks, 1992; Woo,
1992; Katz, 1996; Mearns et al., 1996; Mavromatis and
Hansen, 2001). Generated weather is needed to supplement
existing weather data, provide alternative weather
realizations for a particular historical record, or identify
possible weather sequences for a seasonal climate forecast.
Previous studies have generally focused on model
development and validation of weather generators (e.g.
Richardson, 1982; Wallis, 1993; Johnson et al., 1996;
Semenov et al., 1998; Wilks, 1999; Wilks and Wilby, 1999).
Here practical consideration is given to situations where it is
essential that the generated daily precipitation reproduce
closely the distribution or summary statistics of a historical
record or a seasonal forecast.

One generally expects and assumes that generated
weather accurately reproduce the summary statistics that are
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used to drive the weather generator. Yet recalculation of
mean transitional probabilities and mean daily precipitation
from the generated daily precipitation shows that this is not
always the case due to the stochastic nature of generated
weather. The average size of the discrepancy depends largely
on the length of the generated weather sequence. The longer
the generated weather sequence, the closer its summary
statistics were to the expected values. The typical length of
generated weather sequences for agricultural analyses is
between 30 and 50 years. For such short lengths the
discrepancy in summary statistics of the generated precipita-
tion can be of the same order of magnitude as departures
associated with a typical seasonal precipitation forecast.
Hence, discrepancies related to the stochastic nature of
generated precipitation may overshadow the intended simu-
lation of a systematic difference associated with a particular
seasonal precipitation forecast. Theoretically, this shortcom-
ing can be overcome by simply increasing the length of the
sequence of generated precipitation to several hundreds of
years. However, considerations related to subsequent use of
the generated weather in complex and resource intensive
agricultural  simulation models suggest that sequences of
about 50 years are more prevalent in practice. Hence, a
procedure for generating daily precipitation sequences that
consistently and more closely reproduce the underlying
summary statistics within about 50 years of generated
weather is needed to address such special applications.

In this study, a procedure is proposed to generate 50– to
100–year long sequences of daily precipitation that closely
approximate target summary statistics representing either a
historical record or a seasonal climate forecast. Specifically,
fundamental assumptions underlying the daily precipitation
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models are reviewed, and properties of uniform random
number sequences relevant to precipitation generation are
discussed. The proposed adaptation of the precipitation
model is presented, and the improved capabilities are
illustrated by a practical application to the historical record
from the Kingfisher, Oklahoma, weather station. The pro-
posed procedure calls for a strict uniform distribution of the
sequence of uniform random numbers used to generate
precipitation values. This approach ensures a high level of
compatibility  between model assumptions of a uniform
distribution and uniformity of the actual sequence of random
number that is used. The increased compatibility between
model assumptions and random number properties leads to a
better replication of specific target statistics by reducing
unintended random variability. The use of so called “tested”
random numbers in the precipitation generation model is
particularly useful when a rapid convergence to target
summary statistics is desired, and for practical environmental
and agricultural model applications that simulate subtle
changes in weather characteristics.

STOCHASTIC GENERATION OF

DAILY PRECIPITATION
MODEL DESCRIPTION

Weather generation computer programs, such as CLIGEN
(Nicks and Gander, 1994), WGEN (Richardson and Wright,
1984), US CLIMATE (Hanson et al., 1994), and GEM
(Johnson et al., 2000), often use a chain–dependent stochastic
precipitation model to characterize daily precipitation at a
site. A chain–dependent stochastic precipitation model is
also used in this investigation. Daily precipitation is modeled
in two sequential parts: first, the occurrence of a rainy day,
and second, the amount of precipitation on a rainy day
(Waymire and Gupta, 1981). A two–state, first–order Mar-
kov chain determines the occurrence of rainy days. The
Markov chain is said to be two–state because it only considers
whether precipitation does or does not occur on a specific
day, and it is first–order because the probability of precipita-
tion on a rainy day is conditioned only on the precipitation
state of the previous day (Haan et al., 1976). The probabilities
of precipitation given the previous day’s precipitation state
are called transition probabilities. The transition probabili-
ties considered here are the probability of a wet day after a dry
day (PWD), and of a wet day after a wet day (PWW). The
nonstationarity of transition probabilities within a year due to
seasons is introduced by using separate transition probability
values for each calendar month (Wilks, 1989). The precipita-
tion amount on a rainy day is specified by a probability
distribution function (or cumulative distribution function) of
daily precipitation amounts. In this investigation a double
exponential distribution is used. As before, seasonality is
introduced by using different distribution parameters for
each calendar month. Both the transition probabilities and
distribution parameters are derived from available historical
data. Further information on the fundamentals of chain–de-
pendent stochastic precipitation models can be found in
Woolhiser and Roldan (1982), Hanson et al. (1994), Johnson
et al. (1996), and Parlange and Katz (2000).

STOCHASTIC PRECIPITATION GENERATION PROCESS
Occurrence of a rainy day is determined by comparing a

random number generated from a uniform distribution
between 0 and 1 to the value of the transition probabilities
PWD or PWW. If the preceding day is dry and the random
number is smaller than PWD, then the current day is a rainy
day; alternatively, if the random number is greater than PWD,
then the current day is dry. The decision process is similar if
the preceding day is wet. Once the occurrence of a rainy day
has been established, the amount of precipitation on that day
is determined by generating a new random number from a
uniform distribution and solving the inverse cumulative
distribution function for daily precipitation, i.e. the random
number is taken as the cumulative frequency value and the
corresponding daily precipitation is determined analytically
or numerically (fig. 1). Strings of consecutive random
numbers (called sequences) are generated separately for each
transition probability, precipitation distribution, and calen-
dar month. For 30– or 50–year’s worth of generated
precipitation data, anywhere between 50 to 1500 random
numbers are required per parameter and calendar month.
Generation of separate sequences of random numbers for
each parameter and month is important, because selectively
picking random numbers out of a single continuous string for
assignment to different parameters and time periods may
alter the random properties of the resulting sequence of
random numbers for that parameter and time period. For
example, generation of 30 years of daily precipitation for the
month of January (assuming, on average, 29 dry days and
2 rainy days) requires a sequence of about 900 uniformly
distributed random numbers (30 years × 29 dry days) to
determine the occurrence of rainy days after dry days. To
determine the amount of precipitation on each of the rainy
days requires a separate sequence of 60 uniformly distributed
random numbers (30 years × 2 rainy days). And to determine
the occurrence of rainy days after wet days, requires another
separate sequence of 60 uniformly distributed random
numbers (30 years × 2 wet days). In arid climates, the scarcity
of rainy days may require that over 50 years of precipitation
be generated to adequately reproduce the historical record.

PRECIPITATION MODEL ASSUMPTIONS AND LIMITATIONS

First, precipitation is assumed to be stationary in time.
Thus, systematic annual variations or trends are not modeled.
Second, transition probabilities and daily precipitation
distributions are assumed to be monthly independent. Thus,
non–random persistence effects of monthly precipitation [i.e.
as a result of El Nino Southern Oscillation or other

Figure 1. Schematic of the generation of daily precipitation amounts.
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ocean–atmosphere  anomalies (Woolhiser et al., 1993)] are
not modeled. Third, random numbers used for precipitation
generation are assumed to be uniformly distributed between
0 and 1. Anything other than uniformly distributed random
numbers will not reproduce or converge to the transition
probabilities and daily precipitation distribution of the
historical data that is being simulated. Fourth, daily precipi-
tation is generally modeled by medium–tailed distributions
(exponential, gamma, mixed–exponential, skewed–normal,
etc.). Thus, one should not expect the model to work well for
the generation of extreme daily precipitation values that have
a heavy–tailed distribution (Katz, 2002). Fifth, monthly
transition probabilities and daily precipitation distributions
are derived unconditionally, i.e. they are not conditioned on
wet or dry months. As a result low– and high–end monthly
precipitation values are not well reproduced (Wilks, 1989).
In the context of these assumptions and limitations, the role
and effect of random numbers on generated daily precipita-
tion is investigated.

RANDOM NUMBERS
RANDOM NUMBER GENERATORS

Random numbers generated from three different random
number generators are used to graphically illustrate typical
variations in random number sequences. The first random
number generator, RN1, is by MacLaren and Marsaglia
(1965) and was used in the original version of CLIGEN. The
second generator, RN2, is by Press at al. (1992) and includes
two generators and shuffling to break up any sequential
correlations.  And, the third generator, RN3, is a library
function included in the Salford compiler (Salford, 1998).

RANDOM NUMBER PATTERNS
Thirty thousand (30,000) random numbers were gener-

ated with each of the three random number generators.
Localized systematic departures of sequences of random
numbers from the expected mean value are visualized by
plotting, for each generator, the cumulative departures of the
random numbers from the expected mean of 0.5 (fig. 2).
Cumulative departures are defined as:

∑
=

−=
n

i
in xcd

1
)5.0(  (1)

where cd is cumulative departure, n is the ending position in
the sequence of random numbers, and xi is the uniform
random numbers. If sequences of random numbers were
uniformly distributed between 0 and 1, then the expected
value of the cumulative departure should be zero and the
curve of cumulative departures should randomly fluctuates
about the zero line. However, local steep and sustained
positive and negative variations in the plotted data (indicated
by A in fig. 2) are observed. Such variations are indicative of
sequences of random numbers that display, over the length of
the sequence (up to 1000 values), systematic departures from
the mean of the uniform distribution. Steeper variations are
indicative of larger departures. The departures are most
likely due to inherent properties of sequences of random
number (random clustering effects). The observed departures
of short sequences of random numbers within the overall set
of random numbers do not imply that the random numbers are

not random. It merely points to the fact that short sequences
of random numbers may not closely adhere to the uniform
distribution due to the stochastic nature of random numbers.
Hence, while the generated random numbers display correct
random properties, short sequences of random numbers may
depart from the expectation of a uniform distribution. Thus,
if such a sequence of random numbers were to be used for
precipitation generation, then the generated precipitation
may not be representative of the intended historical data. For
example, in figure 1, if the distribution of the random
numbers were not uniform but trapezoidal with more values
in the lower portion, then a larger number of smaller daily
precipitation values would be generated. The practical
implications of non–uniformly distributed random numbers
are illustrated in the example application section.

DEVIATION OF RANDOM NUMBERS FROM EXPECTED VALUES

For each curve in figure 2, the mean of non–overlapping
sequences of 50, 100, and 200 random numbers is calculated.
The length of sequences corresponds approximately to the
minimum number required for 30– to 50–year’s worth of
precipitation generation for a particular parameter and
calendar month. The mean deviation, standard deviation, and
maximum deviation are used as measures of departure and
are expressed in percent of the expected mean (0.5).
Deviation refers to the absolute difference between the mean
of a generated sequence of random numbers and the expected
mean of 0.5. The results are summarized in table 1. The
magnitude of the deviation is similar for the three generators.
The values in table 1 are in line with what one would expect
based on random sampling from a uniform distribution. For
example, the standard deviation of the mean (in percent of
mean) for sequences of 50, 100, and 200 generated random
numbers is 8.3%, 5.8%, and 3.9%, respectively, which is
close to the theoretically expected values of 8.16%, 5.77%,
and 4.08%, respectively. The average of the mean deviation
(last column in table 1) for non–overlapping sequences of
100 random numbers is 4.6%, the average standard deviation
is 5.8%, and the average maximum deviation is 18.0%. The
same statistics for sequences of 50 random numbers (first
three rows in table 1) and 200 random numbers (last three
rows in table 1) show that quadrupling the sequence length
from 50 to 200 random numbers reduces the average

Figure 2. Cumulative departures of 30,000 random numbers generated
by three different random number generators (RN1, RN2, RN3). Symbol
A shows locations where the sequence of random numbers is not likely
uniformly distributed, and symbol B shows locations where it is likely
uniformly distributed.
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Table 1. Deviations of the mean from three random number generators
of non–overlapping sequences of 50, 100, and 200 random numbers

from the expected value of 0.5.

Generator Name
RN1
(%)

RN2
(%)

RN3
(%)

Average
(%)

600 sequences of 50 random numbers
Mean deviation 6.5 6.9 6.5 6.6
Standard deviation 8.0 8.6 8.2 8.3
Maximum deviation 24.5 32.7 27.7 28.3

300 sequences of 100 random numbers
Mean deviation 4.8 4.6 4.4 4.6
Standard deviation 6.1 5.8 5.5 5.8
Maximum deviation 20.2 18.7 15.2 18.0

150 sequences of 200 random numbers
Mean deviation 2.9 3.2 3.3 3.1
Standard deviation 3.5 4.0 4.3 3.9
Maximum deviation 9.9 11.5 15.3 12.2

deviation by only about half, which is what one should expect
with increasing sample size.

Given the pattern of localized systematic departures
(fig. 2), the size of the deviations (table 1), and the
requirement that random numbers conform to the uniform
distribution (precipitation model), one could be inclined to
test sequences of random numbers for conformity to the
uniform distribution and only use those sequences that pass
that test. Such an approach has been proposed by Niederreiter
(1978) who argued that statistical randomness may not be the
only desirable property, and that other properties of generated
random numbers, such as “evenness” of the distribution of
random points, may also be important in some applications.
This is believed to be the case here where the generated
precipitation can only reproduce the desired historical
precipitation distribution if the random numbers are truly
uniformly distributed over the range of 0 and 1. The notion
of making certain properties of a sequence of random
numbers dependent on the intended use has also been
suggested in Law and Kelton (2000).

RANDOM NUMBER TESTING
Law and Kelton (2000) proposed to use a Chi–Square

“goodness–of–fit” test, with all parameters known, to check
whether a sequence of random numbers is uniformly
distributed between 0 and 1. In this study the authors tested
sequences of 100 random numbers as they are generated. The
value of 100 random numbers was a compromise between the
low–end value for the generation of 30 to 50 years’ worth of
precipitation and the need for large samples to conduct a
meaningful Chi–Square test. Traditionally, one would reject
random numbers that fail the test with a α value of 0.1 or 0.05,
meaning that only random numbers that have a truly uneven
distribution are rejected. Here, however, we want to retain
random numbers that are very evenly distributed, and,
therefore, the test is conducted with a α value of 0.95. In
addition to uniformity of the distribution, the mean of the
random numbers is also tested to be within 0.5% or less of the
expected mean of 0.5. Hence, sequences of 100 random
numbers that pass these tests can be expected to approximate
the uniform distribution very closely. These sequences of
random numbers are referred to as “tested” random numbers
because they are made to conform to the uniformity
assumption of the precipitation model. In the practical

implementation  of this test, a suitable sequence of random
numbers cannot always be found within a desired number of
tries. In these instances the Chi–Square test criteria are
relaxed, i.e. α is incrementally reduced (0.94, 0.93, 0.92,
0.91, and 0.90), and the difference in the mean is incremen-
tally increased (1.0%, 1.5%, and 2%), until a pool of random
numbers that passes the test is found.

Thirty thousand “tested” random numbers were generated
and non–overlapping sequences of 50, 100, and 200 random
numbers were evaluated in an identical manner as the
“non–tested” random numbers in the previous section.
Results are shown in table 2. Mean deviation, standard
deviation, and maximum deviation are all smaller than
corresponding values for the three random number genera-
tors presented in the previous section (table 1). For sequences
of 50 random numbers, corresponding values decreased by
about 30%, whereas for sequences of 100 and 200 random
numbers values decreased by a factor of about 10 or larger.
Sequences of 100 and 200 random numbers fared much better
because the testing for uniformity was conducted on pools of
100 random numbers. Overall, “tested” random numbers
adhere much closer to the assumption of uniform distribution
than “non–tested” random numbers. Similar high levels of
improvements could have been achieved for the sequence of
50 random numbers if the testing were conducted on pools of
50 random numbers. The underlying assumption here is that
any practical application of the weather generator will use at
least 100 random numbers per variable and month, and
testing can be conducted on pools of 100 random numbers.

IMPACT ON GENERATED PRECIPITATION
The daily precipitation data of the National Weather

Service station at Kingfisher, Oklahoma is used as baseline
to illustrate the impact of “tested” versus “non–tested”
random numbers on the generated daily precipitation. The
impact is defined in terms of deviation of generated daily
precipitation statistics from baseline values of the historical
precipitation data, expressed in percentage of the historical
values. Deviations are calculated by month for the transition
probabilities PWD and PWW and for the mean, standard
deviation and skew coefficient of the daily precipitation. The
impact of “tested” versus “non–tested” random numbers on
generated precipitation is evaluated for ten separate precipi-
tation generation runs of 50 years each. Ten separate
generation runs are made, each with different random
numbers. The different random numbers result in slightly
different generated precipitation values. The random number
generator used for this assessment is RN3. This random
number generator was selected because it is the most detailed
of the three used in this study.

Table 2. Deviations of the mean for non–overlapping sequences of 
50, 100, and 200 “tested” random numbers, expressed 

in percent of the expected value of 0.5.

600 Sequences
 of 50 Random
Numbers (%)

300 Sequences
 of 100 Random

Numbers (%)

150 Sequences
 of 200 Random

Numbers (%)

Mean deviation 4.8 0.4 0.3
Standard deviation 6.0 0.5 0.4
Maximum deviation 18.8 1.4 0.9
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Table 3. Deviations of transition probabilities PWD (rainy day after dry day) and PWW (rainy day 
after rainy day) from historical baseline data in percent of baseline value.

Jan. Feb. March April May June July Aug. Sep. Oct. Nov. Dec. Avg.

PWD
     Non–tested 6.5 5.5 5.8 6.0 3.5 4.9 5.8 4.6 4.3 5.1 6.1 5.5 5.3
     Tested 3.4 3.0 3.5 2.3 2.7 2.4 3.8 3.3 2.2 2.1 3.7 3.9 3.0
PWW
     Non–tested 11.3 8.2 7.8 4.1 5.3 4.1 6.7 4.4 6.8 7.1 9.6 8.5 7.0
     Tested 6.6 2.6 4.1 2.6 1.3 2.7 4.6 2.9 2.6 1.9 1.6 5.2 3.2

TRANSITION PROBABILITIES
Transition probabilities PWD and PWW are calculated for

the ten generated precipitation data sets, and average
monthly deviations from the historical baseline are reported
in table 3 for the case of “non–tested” and “tested” random
numbers. For all months the deviation of transition probabili-
ties from baseline is smaller for “tested” random numbers.
The largest average deviation in PWD produced by “non–
tested” random numbers is 6.5% (Jan.), whereas it is 3.9%
(Dec.) for “tested” random numbers. Similarly, for PWW, the
values are 11.3% and 6.6%, respectively. On average over all
months (last column in table 3), the deviations for PWD and
PWW are reduced by a factor of two when using “tested”
versus “non–tested” random numbers.

DAILY PRECIPITATION DISTRIBUTION
The deviations in mean, standard deviation, and skew

coefficient of the generated daily precipitation are presented
in table 4 for each month and as an average over the year.
Deviations in the mean (first two rows) appear to be
systematically  smaller for “tested” than for “non–tested”
random numbers. The annual deviation (last column in table
4) shows that the average reduction is about a factor of two.
However, for this application, the reduction does not extend
to the standard deviation and skew coefficient that have
similar deviations for “tested” and “non–tested” random
numbers.

The distributions of generated daily precipitation for the
month of April for each of the 10 generation runs are plotted
in figure 3. Each distribution of generated daily precipitation
attempts to reproduce the fitted three–parameter, double–ex-
ponential distribution of the historical data at Kingfisher,
Oklahoma (thick line in fig. 3). The distributions resulting
from “non–tested” random numbers (fig. 3 top) show a much
greater spread than those distributions resulting from
“tested” random numbers (fig. 3 bottom). At the median, the
range of the probability of exceedance curves of daily
precipitation is 0.9 mm for the “tested” random numbers,
down from 2.5 mm for “non–tested” random numbers. The
greater spread associated with “non–tested” random numbers

is attributed to the sustained departures of sequences of
random numbers from the uniform distribution as shown in
figure 2. The results show that daily precipitation values that
have been generated with “tested” random numbers approxi-
mate the fitted distribution of the historical data at Kingfisher
better and more consistently.

DISCUSSION
Mean monthly precipitation derived from daily precipita-

tion generated based on “tested” random numbers is well
reproduced; yet the variability of the derived monthly
precipitation is often underestimated. A similar underestima-
tion of variability was also reported for the case where
“non–tested” random numbers are used in the model
(Johnson et al., 1996; Wilks, 1989). A fundamental reason for
this underestimation of monthly variability lies in the
simplifying assumptions of the precipitation model, and not
so much in the quality and properties of the random numbers.
The model assumes constant monthly transition probabilities
and daily precipitation distributions. In reality, occurrence of
rainy days and amount of daily precipitation change when a
particular month is either dry or wet (Wilks, 1989). Wilks
showed that daily precipitation generation conditioned on
dry/wet state of a month will reproduce the high and low end
of monthly precipitation. Based on the similarity in the
average departure of the standard deviation (table 4) between
daily precipitation generated from “non–tested” and “tested”
random numbers, it is believed that the use of “tested”
random numbers for precipitation generation does not
contribute much to degrading the variability of monthly
precipitation beyond that already inherent to model simplifi-
cations.

Similar considerations apply for variations in annual
precipitation that often are a function of persistence of wet or
dry months. The daily precipitation model assumes indepen-
dence between monthly precipitation statistics and, thus,
allows only simulation of random, probabilistic clustering of
wet or dry months (Johnson et al., 1996). This limits

Table 4. Deviations of the mean, standard deviation, and skew coefficient of generated daily 
precipitation from historical baseline data in percent of baseline value.

Jan. Feb. March April May June July Aug. Sep. Oct. Nov. Dec. Avg.

Mean
     Non–tested 7.2 5.7 5.7 7.2 4.8 3.6 6.3 6.1 6.2 6.7 8.3 6.0 6.2
     Tested 3.4 6.1 2.5 1.3 2.1 2.8 2.6 3.7 2.3 2.9 4.0 2.6 3.0
St. Dev.
     Non–tested 9.5 8.1 11.2 8.5 5.4 3.2 4.9 8.6 7.2 11.8 8.9 8.1 7.9
     Tested 7.2 18.7 7.7 2.9 3.9 5.4 7.8 9.0 7.4 5.4 7.1 6.9 7.4
Skew Coef.
     Non–tested 28.8 21.5 29.6 11.3 10.2 7.9 16.5 17.4 14.9 18.3 23.4 15.2 17.9
     Tested 20.0 24.9 25.6 14.1 11.8 11.1 27.1 15.9 19.0 17.2 24.0 17.7 19.0
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Figure 3. Distributions of generated daily precipitation based on
“non–tested” (top) and “tested” (bottom) random numbers. The thick line
at the center of the generated distributions represents the fitted
distribution of the historical data at Kingfisher weather station,
Oklahoma.

the model’s ability to simulate systematic, long–term wet/dry
persistence, such as those brought about by an El Nino or
other low frequency ocean–atmosphere interactions (Wool-
hiser et al., 1993). Here again, the underestimation of annual
precipitation variability is induced by model simplifications,
and should not be attributed to the use of “tested” random
number in the precipitation generation process.

One may also be inclined to think that additional
variability associated with “non–tested” random number
sequences may provide a basis for generating more accurate-
ly extreme daily precipitation events of 100– to 200–year
length. Such a thought should be viewed with great
skepticism. First, there are no reasons to believe that
“non–tested” random numbers should occur more frequently
at the edge of the distribution (near 0.0 or 1.0) than “tested”
random numbers. A test of 100,000 random numbers showed
that both the “non–tested” and “tested” approach produced
about the same number of values above a threshold of 0.999,
with highest value in either approach near 0.99999. Second,
generally accepted distributions of daily precipitation (expo-
nential, gamma, mixed–exponential, skewed–normal, etc.)

are medium–tailed distributions and less suitable for accurate
representation of extreme values which generally have a
heavy–tailed distribution. And, third, the focus and intent of
the proposed approach is to produce repeat sequences that
approximate the intended summary statistics well, not to
generate more accurate extreme events. Given these consid-
erations the use of “tested” random numbers do not
negatively impact the generation of extreme events.

The best demonstration that model–generated daily
precipitation based on “tested” random number sequences do
approximate the fitted distribution of the historical record or
a seasonal precipitation forecast (target statistics) more
consistently is illustrated in figure 3. The use of “tested”
random numbers leads to distributions of generated daily
precipitation that are more consistent with one another and
with the target distribution. Thus, the proposed approach
fulfills the objective of reproducing accurately a desired
target distribution within constraints of commonly used
simulation durations for agricultural applications.

CONCLUSIONS
This study recognized that short sequences of uniform

random numbers, while being acceptably uniform in the
terms of random sampling statistics, do not always meet
uniformity expectations for daily precipitation generation
that aim at consistently reproducing the summary statistics of
a historical record or a seasonal precipitation forecast. For
such purpose, the model for daily precipitation generation
must be driven by random numbers that are uniformly
distributed between 0 and 1. Yet, short sequences of random
numbers are not necessarily uniformly distributed, and
discrepancies may arise between expected and actual
properties of random numbers provided to the precipitation
generation model. This limitation is not new and has been
well formulated by Neiderreiter (1978): “… instead of trying
to cope with the impalpable concept of randomness, one
should select [random] points according to a deterministic
scheme that is well suited for the problem at hand.” In this
study, a deterministic testing procedure has been proposed to
screen short sequences of random number to meet the
requirements of the precipitation generation model, i.e.
random numbers uniformly distributed between 0 and 1. The
following conclusions can be drawn from this investigation:
� The use of “tested” versus “non–tested” random numbers

in stochastic generation of daily precipitation does make
a difference in the characteristics of generated daily
precipitation data and can be a factor when close
reproducibility  of a target distribution is an issue.

� Daily precipitation generated with “tested” random
numbers consistently produce transition probabilities and
a mean of daily precipitation that better approximate the
historical record or a seasonal precipitation forecast, and
promoted a faster convergence to the target summary
statistics.

� The improvements achieved by use of “tested” sequences
of random numbers enhance the usefulness of generated
precipitation in practical simulation applications that need
to identify agronomic impacts of a particular climate or
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forecast departure within constraints of realistic
simulation durations.
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NOMENCLATURE
� � significance level of the Chi–Square test
Cd = cumulative departure
I = counter
N = upper count limit for cd calculation
PWD = Probability of rainy day after dry day
PWW = Probability of rainy day after rainy day
RN1 = random number generator by MacLaren and 

Marsaglia (1965)
RN2 = random number generator by Press at al. 

(1992)
RN3 = random number generator of Salford compiler

(Salford, 1998)
X = random number
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